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The Promise and Challenge for Space-based
GHG Measurements

Primary assets of space based GHG measurements:
« Spatial coverage: Observations over both land and ocean

» Temporal resolution and sampling
» Hourly sampling needed to resolve diurnal cycle and plumes
+ Daily to weekly sampling needed to resolve CO, weather
« Monthly measurements required over multiple years to resolve seasonal
and inter-annual variability in CO,
« Spatial resolution and sampling
« Sensitivity to point sources scales with area of footprint
« Small measurement footprints enhance sensitivity to point sources and
reduce data losses due to clouds
The primary challenges of space-based GHG measurements:

* The need for unprecedented levels of precision and accuracy

 High precision required to resolve the small (< 0.25%) variations in CO,
and CH, associated with sources and sinks

» High accuracy essential to yield regional-scale biases < 0.1%
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Measuring CO, from Space

» Record spectra of Retrieve variations in the  Validate measurements to
CO, and O, column averz \ger\ L0, did\ - ensure X, accuracy of 1
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The Primary Data Products

Level 1B: Calibrated, geolocated spectral radiances ﬂ
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Cross-Calibrating Observations from
Greenhouse Gas Missions

» The requirement for high accuracy for greenhouse gas |
measurements (< 0.1%) imposes stringent constraints Bt
on the calibration individual instruments and cross- '
calibration of data from different instruments

* Lessons learned from the GOSAT, OCO collaboration
suggest the following minimum requirements

* Pre Launch:

« Exchange information on best practice for pre-launch
instrument characterization

« Cross calibrate pre-launch radiometric standards against ’
internationally-recognized (Si-Traceable) standards "

 Post Launch:

« Exchange solar and lunar (ROLO) standards and best
practices for solar and lunar observations and analysis

« Conduct joint vicarious calibration campaigns and L.
coordinate observations of pseudo-invariant Earth targets




The GOSAT — OCO-2 Pre-Launch Cross-
Calibration

» As part of their pre-launch testing programs, the GOSAT and OCO

teams visited each other’s test facilities and cross-calibrated their
radiometric standards (Sakuma et al., 2010).

* These measurements benefited both teams by identifying subtle errors and
uncertainties in their pre-launch calibration hardware and testing procedures.

* Many of the lessons learned from the OCO-GOSAT pre-launch calibration were
adopted as parts of the OCO-2, OCO-3, and GOSAT-2 pre-launch calibration
programs and have been incorporated into the GeoCarb calibration plan.

The OCO-2 and OCO-3 teams took a further step by enlisting the
direct participation of the National Institute of Standards and

Technology (NIST) in the pre-launch radiometric calibration process
(Rosenberg et al., 2017).

e Similar methods and instruments can be adopted by other missions to
radiometrically calibrate high-spectral-resolution NIR and SWIR spectrometers.

Sakuma, F., et al.. OCO/GOSAT Preflight Cross-Calibration Experiment, IEEE Transactions on
Geoscience and Remote Sensing, 48, 2010.

Rosenberg, R. et al.: Preflight radiometric calibration of Orbiting Carbon Observatory 2. IEEE Trans.
Geoscience Remote Sensing, 55, doi 10.1109/TGRS.2016.2634023, 2017.
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Pre-Flight Instrument
Characterization and Calibration

» Pre-flight testing quantifies key
Instrument performance and
knowledge parameters

« Geometric

 Field of view, Bore-sight
alignment

« Radiometric
» Zero-level offset (bias)
« Gain, Gain non-linearity
» Spectroscopic
« Spectral range, resolution,
sampling
 Instrument Line Shape (ILS)
» Polarization
* Instrument stability
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Optical Ground Support Equipment

Collimator: spatially-defined continuum and laser light sources to
» Establish the spectrometer focus
» Define instrument field of view (including slit alignment, spatial stray light)
» Define the spectrometer instrument line shape and spectral scattered light
» Determine the angle of polarization

Integrating Sphere: spatially uniform continuum light sources to

» Characterize and calibrate radiometric performance (minimum and
maximum measureable signal, radiometric gain and its linearity, signal to
noise ratio)

* Provide a baseline for the pixel-to-pixel variability in gain
Step-scan FTS: for assessing spectral stray light rejection

Heliostat: acquire atmospheric spectra using direct sunlight
« Validate the instrument line shape and dispersion
» Test gain linearity and transient response over a range of illumination

* Provide an end-to-end test of instrument calibration & retrieval algorithm
performance, through comparisons with TCCON XCO2 retrievals
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Geometric: Slit Alignment

~0.5 mrad (typical)

Slit Width <2mrad 0.7 mrad (worst case)

~3x Margin

~0.1 mrad (typical)

U <0.
Slit Misalignment 0.26 mrad 0.15 mrad (worst case)

~70% Margin

Test: 0260, Relative slit alignment

Slit centroid delta (band - band) (mrad)

o f i Test: 0260, Slitimage (rows not measured="yellow")
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Sphere
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An integrating sphere with 10 lamps (one of which had a variable aperture) was the
primary tool used for calibrating the radiometric performance of the instrument. The
performance of the sphere (installed above the TV chamber in the TV test

configuration) was calibrated in collaboration with NIST.
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Radiometric: Dynamic Range

Requirement Value Measured Notes
Max Measureable Signal — A-band >1.4x10%1 * ~1.8x10%1* |« ~30% Margin
. * \Very large margins
Max Measureable Signal — Weak CO, >4.9x10%0 * >8.7x10%1 * y lare , 5
* Sphereisn’t bright
enough to saturate the
Max Measureable Signal — Strong CO, >2.5x1020 * > 3.8 x 1021 * detectors in CO,
channels
ABO2 Col 300 Row 50 MeasurableSignalMaxObserved = 1.9639807e+21
3.0x10° T T T T T 1.4x10" T T T T
25x10° A et ] ST P
20x10° | ] 1.3:107 |
g 15x0t [ .E
§ B raxto”f
= 1ox10' %‘
50x10° | i
11x10 [
ok MaxMs
{,'0“010 5.0>:IO?° 1.0;10" 1.5><II0" 2.0>:|07' 25;10”' 3.0x10” 10“0-"0 .":.l'.}><l1020 10;10" 1.5;10?' 2.0;107' 25;10" 3.0x10”
Radiance gm “sr ' um 57" Radiance pm “sr um 57

* OCO Radiance Units are: photons/m?/sr/um/s
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Frequency

Nominal Signal

Radiometric: Signal-to-Noise Ratio at

Requirement Value Measured Notes
Signal-to-Noise Ratio — A-band >290 302 -361 At 5.9 x 10%° photons/m?/sr/um/s
Signal-to-Noise Ratio — Weak CO, >270 369 - 441 At 2.1 x 10* photons/m?/sr/um/s
Signal-to-Noise Ratio — Strong CO, > 190 267 - 350 At 1.1 x 10*° photons/m?/sr/um/s
ABOQ Nominal Radiance: 5% = 301.6, 50% = 342.9, 95% = 360 6 WCO2 Nominal Radiance: 5% = 369. 0 50% 416.6,95% = 441.0
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Requirement

Spectral Range — A-band

Value
758 to 772 nm

Measured

757.6 —=772.6 nm

Spectral Range — Weak CO,

1,594 -1,619 nm

1,590.6 - 1,621.8 nm

Spectral Range — Strong CO,

2,045 -2,082 nm

2,043.1 - 2083.3 nm

Spectroscopic: Spectral Range

Notes

Bands are well centered for
0CO0-2

Spectral dispersion and fit footprint = 3
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Wavelength (m)
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Requirement

Spectral Resolution — A-band

Value Measured

> 17,000 17,500 - 18,500
Reso

Spectral Resolution — Weak CO,

> 20,000 19,100 - 20,500

Spectral Resolution — Strong

Co,

> 20,000 19,700 - 19,900

in CO2 channels. L2 Algorithm
Team found found no impact on
OCO-2 Level 1 requirements

Spectroscopic: Spectral Resolution

Notes

Iving power is slightly low
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Characterizing the Instrument Line Shape (ILS)
with Tunable Diode Lasers
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Record Laser Diode Scans Combine measurements Produce a smooth fit to the
over 5-10 adjacent spectral from all scans of each combined data set for each
samples at 40 to 50 spectral sample within each sample.
wavelengths ranges scan range to create a over-
throughout each channel. = sampled combined dataset

Finally, the ILS was assumed to vary smoothly over each channel such that the
mean ILS recorded for each 5-10 sample range can be attributed to the center
wavelength of that range, and the ILS of intermediate samples can be linearly
interpolated between these ranges. The ILS of each spectral sample is then
described on a un-equally-spaced 200-point grid (see red dashes in figure above).
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Spectroscopic; Instrument Line Shapes

Test: 6842/01A08, Laser stabilization: footprint = 3, representative column = 783 * EXampIeS Of tunable diOde |aserS Scans
] across each of the three spectral ranges.
: « This method could characterize the ILS shape

over a dynamic range of 1000 to 10000.
These results provided | § | : :
information about the
ILS shape, width
(resolving power) and : __
dispersion, but these :
results were not ‘ .
adequate to meet the . T L T R P T
OCO-2 requirements
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Verifying the ILS with Direct Solar Measurements

Solar Disk

Heliostat

Fold Mirror |/~ | Tracking

—— Roof
| Fold Mirror | \v—\ | Diffuser
0CO-2 JPL test
Instrument facility

Vacuum
Chamber

A heliostat on the roof of the building housing the thermos vacuum chamber
allowed the acquisition of spectra of direct sunlight. Simultaneous observations
from a nearby TCCON station served as a high resolution reference standard.
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Pre-flight Heliostat/ TCCON Observations Verify End-
to-End Instrument Performance

Observations of the sun with the flight instrument taken during TVAC tests
provide an end-to-end verification of the instrument performance.

" 0CO-2

1.60 1.61 162
Wavelength («um)

21 April 2012
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« TCCON spectra (R ~ 200,000) were

convolved with the OCO-2 ILS fits
derived from the laser diode
measurements and compared to the
spectra recorded by the OCO-2
instrument

Strong solar lines had to be
eliminated from these fits because
the TCCON and OCO-2 sample the
solar disk in differently

« TCCON observes only the middle
~10% of the solar disk

» OCO-2 samples the complete disk,
including the solar limbs, and thus
sees lines with more Doppler
broadening.

Typical residuals were < 0.5% after
an optimization step (ILS width and
dispersion adjusted)



CO, Column Retrievals from the
Strong CO, (SCO2) Channel at 2.06 pm

25 CO2 columns, L2 code, TCCON used 4853 window, LM, 0.99 scaling

x 10
825 ! 1 ! ! ! 1 ! ! ! 1 ! 2 plumes
' | ' ' : | : ' : | ' (also visible
| | in TCCON
82% : : - CO, CH, and
; : H,O)!
—— TCCON"
: -
3 81 S
3 805 OCO-2
° R " Footprint
L 1 not full
i i i i i i i i &%‘%\ i H H y
"9%00 1500 1600 17:00 1800 19:00 2000 21:00 2200 2300 0000 01:00 02:00 iluminate
time (UTC) d

7 of the 8 footprints in the SCO2 channel produce CO, column estimates within £0.25%.
** TCCON does not use this channel to retrieve X,. This is a custom retrieval by D. Wunch.
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Verifying Radiometric Calibration:
The On-board Calibration System

Closed for lamp The on-board calibration (OBC) system
calibration consists of a rotating calibration paddle
that carries:

» an aperture cover, with a reflective
diffuser illuminated by on-board lamps
for monitoring pixel-to-pixel variations

« Atransmission diffuser for making
observations of the solar disk for
monitoring radiometric calibration

Open for Science
observations

| M)

0, A-Band

Weak CO2
e e e

Strong CO,

Reflective diffuser Telescope baffle assembly,
showing lamps for flat fields Lamp “flat fields” from each channel.
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http://lenday.com/OCO.OSC.HighBay.2008.04.16/full/OCO.OSC.HighBay.2008.04.16.001.jpg
http://lenday.com/OCO.OSC.HighBay.2008.04.16/full/OCO.OSC.HighBay.2008.04.17.002.jpg

Solar Radiometric Calibration

Relative Intensity: OCO-2 (black), Model (red), footprint = 7,
excluded wavelengths (yellow)
12 = T T T ‘

« Observations of the Sun are acquired .- AR
through a diffuser on ~12 orbits each i » " WW [ WW E
day ;

"~ 0,A-Band Channel (ABO2)
« These spectra are used to track S N T B

changes in the radiometric calibration O‘::“:f‘“k)“‘:dl( o

» Solar lines are also monitored to S _

. . . ~F T "L{“W WWN‘U*WW 1,‘“[ wr ‘U 1

track changes in the instrument line Jup W’W g

shape (ILS) E
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* These data are corrected for Doppler -~ T Ty

shift and combined for produce S E

massively ov.ersampled solar line data : 206 pm 002 Channel (SCO2)

* No changes in the ILS have been seen it PTTET
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Throughput Trending — Solar Calibration

Nadir

Glint

Interleaved

Relative Radiance

0.95 |—

0.90 |

Median Solar Radiance (Adjusted for Solar Diffuser Degradation)

5.0%10° 1.0x10" 1.5%10" 2.0x10*
Orbit Number
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Routine solar observations are used to track ice accumulation on FPA’s, which
can produce rapid changes in the sensitivity of the O2 A-band channel.
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A-Band Channel Sensitivity Variations

* The sensitivity of the OCO-2 ABO2 channel has varied over time,
while the WCO2 and SCO2 show much less variability
« The ABO2 sensitivity degradation has two components
* A “fast degradation” reversed by decontamination activities

* This component has been attributed to temporary degradation of
the anti-reflection coating on the A-band focal plane array detector
(FPA) due to the accumulation of a thin (< 100 nm) layer of ice on
the FPA

* A monotonic “slow degradation”

* Lunar and Vicarious Calibration measurements indicate that this
change is due to degradation of the solar diffuser rather than a
throughput loss in the instrument

These changes have become a major focus of the OCO-2 on-orbit
radiometric calibration program

Ve B
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Lunar Calibration

* Observations of the Moon are acquired twice
each month to support three calibration
activities

* Geometric calibration: Relative pointing of the
instrument boresight and the star tracker
* Co-alignment of 3 spectrometer slits

* Relative radiometric calibration: Trending the
throughput of the science data path (with no
diffusers or attenuators) and trending the
performance of the solar calibration diffuser

« The Moon is typically observed in % gibbous
phase and near fu” ROLO Iunarirra;gisanncbeaghasefunction
* Gibbous phase is better for geometric calibration,

because the star tracker is partially occulted by the
Earth near full moon

* Both gibbous and full phases yield useful calibration
data, but gibbous phase is more highly polarized
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Geometric Calibration using the Moon
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Typical scan of the spectrometer slit across the lunar disk.
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Boresight Alignment of the Spectrometers

 The OCO-2 and OCO-3 instruments incorporate 3 spectrometer

* The three slits were aligned prior to launch, but there was some
concern that the slits might move during launch

* Observations of the moon are used to monitor the alignment of the
spectral slits of the 3 spectrometers

Row Index
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T T T 1T T T T T 300
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200 |- - 200

-300 ¢

OCO-2 Slit co-Alignment

100
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=
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Lunar Geometric Analysis

AGP v0vs AGP_v&vs Preliminary Lunar Analysis
Observed —
— I | T T T | | T | | [
e
- m - Pre Launch

- - - Estimate

iE E

i [4] — -

3 — o. -G -

. E . % . ... ..o 2 .0 JCurentLunar

% - B g g o 4 analysis

< q00f— © o @ =
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. 200 — T —
Simulated - -
-, | T |o @ -OLunar Analysis
0 > 4 6 B—-WAGP v6
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« Scans across the crescent moon are
collected each month for geometric and
radiometric calibration

* These data re being used to determine the
pointing offsets.
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Lunar Calibration Tracks Science Throughput

~75% Moon ~75% Moon ~75% Moon
(Corrected for Polarization Effects) (Corrected for Polarization Effects) (Corrected for Polarization Effects)
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Observations of the Moon acquired twice each month (at 75% phase
and full) track the long term degradation of the throughput of those
parts of the optical system used for science observations. The
largest changes (~2.5% over 4.4 years) are seen in the ABO2
channel, but the rate of change is decreasing over time.
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Degradation of the Solar Diffuser Tracked Using
Comparisons of Lunar and Solar Observations

ABO2 Slow Degradation €02 Slew Degradation
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Comparisons of Solar (with diffuser) and Lunar (without diffuser)
observation are used to track the long term degradation of the solar
calibration diffuser. The largest changes are seen in the O, A-Band
channel, but the rate of change in decreasing in all three channels.
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* The polarimetric properties of the
moon were studied intensely in the
early 20" century

* Primary goal was to study the
composition of the lunar regolith

* Showed that polarization was
spatially variable but stable

 Most of these observations used
visible wavelengths

* Moon is more strongly polarized at
short wavelengths

* Sensors available at the time were
limited to wavelengths < 1.1 microns

* New NIR and SWIR polarimetric
observations of the moon are
needed for GHG missions

Can the Moon be used as a Polarimetric
Standard
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Fig. 2 to 15. Curves of polarisation in 8 wavelengths for 14 selected areas of the lunar surface (diameter 65”)
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Geolocation Performance Verified with
Surface Targets — Coastline Crossings
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Dark Cal measurements are collected at twice on 12 orbits each day to track variations in
the dark response. Half are performed in single-pixel mode and half are in sample mode.
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Dark Trending
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The spatial distribution of the ABOZ2 dark response is determined primarily by amplifier
readout. The spatial response of the WCO2 dark response is dominated by anomalous (but

not bad) pixels. The dark response in the SCO2 channel reflects both amplifier gain

differences and thermal emission.

In the ABO2 channel, the dark response is most sensitive to the FPA temperatures. For the
SCO2 channel, the dark response depends on both the FPA temperature and the optical

bench temperature.

P
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Bad Pixel Maps

oco2 ARP 24544 24587 v00 190212093707.h5 [11,11,11]

Bad pixel maps are updated by analyzing “single-pixel” dark and lamp flats.
The bad pixel maps changed substantially between the TV tests and launch,
but more slowly since the instrument has been in orbit.
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Bad Sample Lists

estBpm10 150214020957 .h5
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Each spectral sample consists of ~20 along-slit pixels that are summed on
board. Bad sample lists are updated as needed to omit 20-pixel spectral
samples that are not adequately corrected in Bad Pixel Maps.
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Using Lamp Radiances to Trend Gain
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* Observations of diffuse

radiation from the on-
board incandescent
lamps are used to trend
the sample-to-sample
gain differences and their
changes over time.
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Long-term Degradation of the Lamps and Their
Diffuser

ABO2 Lamp Data, Mean of Columns 100-1015
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The OCO-2 instrument uses 3 lamps to illuminate a diffuser for tracking pixel-to-pixel
gain variations. Lamp 1 is used on every orbit, and is cross-checked against lamps 2
and 3. All 3 lamps are still working, but the lamp diffuser has degraded more rapidly
than the solar diffuser. Its rate of degradation is decreasing over time.
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Accurate estimates of the top-of-
atmosphere (TOA) solar flux are critical to
Xcop retrievals

For OCO-2, we construct the solar
spectrum by combining a high resolution

solar “transmission spectrum” (provided by :
Geoff Toon) and a continuum derived from |-

the ATLAS 3 SOLSPEC experiment

Two recent studies have identified biases
in the ATLAS 3 SOLSPEC fluxes

* Reanalysis of the ISS SOLar SOLSPEC
observations (Meftah et al. 2018)

e New data from the ISS TSIS SSI instrument
(Richard et al. 2018)

Both studies show the largest differences
in the CO, channels

Updates to the Top of Atmosphere Solar Flux

sssssssssssssssss

Solar ISS values are

Colors = Meftah et al 7 SOLSPEC

\~0 75% hlgher

AAAAAAAAAAAAAAAA
AAAAAAAAAAAAA

~ TSIS-SIM Brightness Temperatures

ATLAS-3
SPRCE SIM (uncorr.) :|> ATg=200K

1000
wavelength [nm]

Largest Differences seen in the SWIR
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Adjusting the OCO-2 Solar Continuum

Approach:

* Current OCO-2 solar spectral continuum in each channel (v6/v7/v8)
was compared to the Solar-ISS solar spectra recently received from
Meftah et al. and the TSIS-SIM solar spectra from Richard et al.

* The TSIS-SIM values were adopted as the standard here

« The OCO-2 continuum values were:
* Scaled by a multiplicative offset and slope (offset + slope*(A-A_...)),
* Multiplied by the high resolution transmission spectrum
* Convolved with the TSIS-SIM Spectral Response Function (SRF)

» Plotting convention in plots that follow: e
* Original OCO-2 L2 continuum plotted in grey, -
e Scaled continuum plotted in black

e TSIS-SIM plotted in red l?%;g??
* Solar-ISS plotted in green ! R p
* High-res OCO-2 solar spectra (blue) I\ /WY WA Y A
TSIS-SIM SRF
Cco Baxs .
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The OCO-2 continuum was scaled and then
multiplied by the high-resolution solar line
spectrum to produce a high resolution solar
spectrum (blue). This spectrum is compared
to the TSIS-SIM (red) and Solar-ISS
spectrum (green) in each channel. The ABO2
and WCO2 channels have far more strong
solar lines than the SCO2 channel.
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The OCO-2 high resolution solar spectrum
with the scaled continuum was convolved
with the TSIS-SIM spectral response function
(SRF, blue) and compared to the TSIS-SIM
(red) and the Solar-ISS spectrum (also
convolved with the TSIS-SIM SRF (green)) to
validate the scaled values.
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Summary of Solar Flux Results

OCO-2 Continuum Scaling Factors:
« ABOZ2 Scaling:

* (0.987 = 0.3 AN) x F g AR = (A= Apyin) » Ayin = 0.751880 pm
« WCO2 Scaling:

* (0.97 =0.11 AL) X Fygqp AL = (A= Xpin) » A = 0. 1.53846 pm
« SCO2 Scaling:

* 0.935 x F4), No slope correction needed

With these scaling factors, the OCO-2 solar spectrum produces better
fits the TSIS-SIM spectrum

These tests also revealed systematic differences between the TSIS-
SIM and Solar-ISS standards:

« Solar-ISS results are ~1.6% higher than TSIS-SIM at 0.765 pm
« Solar-ISS and TSIS-SIM results are comparable at 1.61 um
» Solar-ISS results are 2.5% lower than the TSIS-SIM near 2.06 ym

l
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Known Issues: Long Term Radiometric Drifts

» Comparisons of the OCO-2 V8 product with Ao b s
TCCON indicate a long-term drift (0.1 ppm/yr) * LT e g

 This drift is correlated with a long term drift in the
radiometric calibration of the V8 L1b product

* OCO-2 was cross calibrated against MODIS Aqua over

the Sahara | (ccoamons o

* Location box: 15°-23°N, 5°-17.5°E s E

» Differences in viewing geometry (BRDF) and spectral
interpolation may account for overall biases (basedon §, ~ .©

RRV experience) ooo 2/MODIS

55555555555555555

AXCO, (ppm)

rrrrrrrrrrr

« Comparisons indicate ABO2 (O2 A-band) S ——

: wl- Lunar Calibrati B
channel has a drift of -0.9% / year 2 T
 Similar drifts seen in lunar calibration trends | fee
» These changes will addressed in the next data o Fo
product. N0 TP AR
_
o B 4



ISS OCO-3

* Scheduled for launch to the International
Space Station (ISS) on or after 25 April 2019

* OCO-3 combines the OCO spectrometers
with an agile, 2-axis pointing system

— Facilitates observations of the ocean glint spot
and validation targets.

— Also has a snapshot mapping mode to collect
dense datasets over 100km by 100km areas.

e e i ::,;

Figure 2: Google
map of the Los
Angeles basin
showing the
coverage provided
by the OCO-3
snapshot mapping
mode. This mode
can be used to map
up to 100 targets
each day.

Google
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OCO-3 Calibration

» OCO-3 includes on-board calibration |
system to collect dark and lamp Calibrator
calibration observations

* Lunar, and vicarious calibration

Calibration System

targets are also used for radiometric
calibration

* Unlike OCO-2, OCO-3 cannot view
the sun for solar calibration, so Lunar,
lamp and vicarious calibration more
important

» Lunar observations will also be used
for geometric calibration

« Context cameras provide continuous
opportunities for verifying the
geometric calibration using land
surface targets

B

& 4

@‘\

Lunar view from ISS
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Vicarious Calibration — Railroad Valley (RRV)

» The Railroad Valley playa is a critical surface calibration site for
several operating and planned Earth Science missions by NASA and
its partners.

* RRV is the only instrumented site within the U.S. that is sufficiently
homogeneous and undisturbed over a large enough area to enable
vicarious calibration of large-footprint instruments, such as GOSAT,
OCO-2, TanSat, GOSAT-2, OCO-3, and GeoCarb.

RRV shown with
GOSAT footprints
(left, ellipses) and
OCO-2 target
observations
(right). Both
missions require
the whole playa.
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Vicarious Calibration
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Annual campaigns characterize both surface and atmospheric properties.

[Kuze et al.]
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The autonomous LSPEC network (above) and
RadCalNet (right) monitors daily reflectance
variations.

RadCalNet sensors
monitor spectra at
surface (BOA) and
estimate TOA
reflectance.
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GOSAT targets the RRV playa
from ground tracks shown in red

while

OCO-2 targets the playa

from ground tracks are shown in
blue. (Kataoka et al. AGU 2018)

Because GOSAT and OCO-2 observe
the RRV playa from different observing
angles, the surface BRDF must be
accurately known to cross calibrate the
products. PARABOLA (tower at left)
monitors BRDF on playa.
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Threats to RRV by Lithium Mining Interests

* Recent mining claims threaten to disrupt the surface of the Railroad
Valley playa, rendering it useless for vicarious calibration

N AR (R ARNES
Areas of the RRV playa | i et {é: e AR
that have been claimed by R IeR =y e nanmmnE s Sy mins
mining interests are shown & 24 NN SEEE IENWEE EuEamD ame :
. . iE ; _ —t g
in yellow and pink. B e N
i e —— i S W SO UL ) e 7R .I mr "‘I
/ i ELIJI ’::l_! H
Sl W mm g [
Example of a “Pacer Claim” Jmmnns ducanaen | m o Hw -L_j;_';_;;,.-;l":'-"_é ';'g _
found on RRV in Summer 2018 & 1+ : "ﬂL i iuagan s
Br ENE HE I RREE o srmanT ARERY

 NASA Science Directorate developed a “Withdrawal Application” to be
submitted to the U.S. Bureau of Land Management to restrict public uses

of the RRV playa that disturb the surface
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Cross-Calibration of GOSAT and OCO-2 over
the Pseudo Invariant Calibration Sites (PICS)
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Coincident spectra of the (a) O, A-band, (b) 1.61 um CO, band and (c) 2.06 um CO,
bands from GOSAT TANSO FTS (red) and OCO-2 (blue) collected over a cloud-free
scene over the Pacific Ocean. (credit: Kataoka et al., 2017). Coincident spectra of the
(d) O, A-band, (e) 1.61 um CO, band and (f) 2.06 um CO, bands from GOSAT TANSO
FTS (red) and OCO-2 (blue) collected over the Sahara Desert. (Kataoka et al. 2017)



Creating Harmonized Products

June 2009 - present
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The GOSAT and OCO-2 measurements were cross-calibrated, and their
data products were cross-validated to produce a continuous, harmonized
data record that spanned the lifetimes of both missions.




Summary

Space-based remote sensing observations hold substantial promise
for verifying inventories and monitoring changes in the natural carbon
cycle associated with climate change

* These data complement existing ground-based and aircraft based in situ data
with increased coverage and sampling density

Over the next decade, a succession of missions with a range of CO,
and CH, measurement capabilities will be deployed
* These missions are demonstrating the precision and resolution needed to

monitor inventories, but improvement in accuracy and coverage needed to for
this application

* Much greater benefits could be achieved if these sensors can be cross-
calibrated and their products can be cross-validated so that they can be
combined into a long, harmonized GHG data record

Well coordinated constellations of GHG satellites, combined with
improved ground and aircraft-based data and flux inversion modeling
tools could meet the expanding needs for independent verification of
GHG inventories
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